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Abstract  

This study implements a state-dependent strategy including both developed and emerging 

markets. We seek to highlight the diversification benefits that these markets are able to offer. 

First, we test the level of integration of emerging markets with the world markets. Second, 

informed by the integration analysis, we implement a dynamic asset allocation strategy; the 

efficiency of this strategy is validated by conducting an out-of-sample performance. We find 

that a number of emerging markets expose time-varying integration relative to the world 

markets and that market-timing potentially adds value to portfolio performance and provides 

diversification benefits. Hence, investors can optimize the return on their investment by 

diversifying their portfolio towards emerging markets. The empirical outcomes of this study 

have practical implication for risk assessment of portfolios and asset allocation decision 

across emerging markets.  

Keywords: Asset allocation, state-dependent strategy, emerging markets  
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1. Introduction  

Investors are aware that markets may undergo abrupt shifts. This may be related to the 

business cycle, as the economy swings between stable conditions to uncertain conditions. 

Evidence of such behaviour has been reported for stock returns (Hamilton & Susmel, 1994), 

interest rates (Gray, 1996), inflation (Kumar & Okimoto, 2007) and commodity prices 

(Heaney, 2006).   

Change in financial markets behaviour present significant challenges for both risk 

management and portfolio selection. If international financial markets are more correlated 

with each other in bad times than in normal times (Longin & Solnik, 2001), this will lead to 

poor forecasts for the portfolio performance when markets decline.1 Previous studies have 

shown that asymmetric correlations caused by extremely large shocks are statistically 

significant and that state-dependent models have the potential to capture the degree of 

asymmetric correlation observed in historical data (Ang & Bekaert, 2002). Given such 

evidence, it may be preferable to manage risk and select portfolio on the basis of state-

dependent strategy. 

State-dependent model (SDM) is introduced by Goldfeld and Quandt (1973), later 

popularized by Hamilton (1989). SDM allows the data to be drawn from different 

distributions (states) where the process is modelled by probabilities of switching between 

different states. Based on volatility of returns, a degree of probability is assigned that the 

process will either remain in the same state or will transition to another state in the next 

period.  

SDMs have stimulated interest in international asset allocation decision and portfolio 

selection. Ang and Bekaert (2004) document how the presence of state-dependency in normal 

and bear markets can be utilized in global asset allocation setting, using six international 

equity indices. They find that a state-dependent strategy is superior to standard static mean-

variance strategy as the model potentially captures different distribution of asset returns based 

on the business cycle. Guidolin and Timmermann (2007) find evidence of four separate 

states, characterized as crash, slow growth, bull and recovery states using U.S. stocks, bonds 

and T-bills and confirm the economic importance of accounting for the presence of state 

dependency in asset allocation decision. More recently, Dou, Gallagher, Schneider, and 

                                                        
1 As stated by Hamilton & Susmel (1994) ‘’extremely large shocks arise from quite different causes and have 

different consequences for subsequent volatility than do small shocks’’. This causes high correlation and 

volatility in equity markets during market turbulence.  
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Walter (2014) accommodates SDMs across different regions and sectors. They find that state-

dependant asset allocations outperform the traditional static asset allocation while optimal 

allocation across sectors provides greater benefit compared to international diversification. 

The international diversification of an investment portfolio presents both challenge and 

opportunity for equity portfolio management. While currently we appear to be witnessing a 

movement towards greater integration of international markets, sufficient segmentation exists 

across emerging markets as to provide diversification benefits. This potential can be expected 

to increase as markets become more accessible and their underlying economies develop. 

Previous research in relation to the merits of a state-dependent strategy in emerging markets 

is scarce. Given the significant economic growth and increasing access to these markets for 

foreign investment, allocation of funds across these markets is a fundamental component in 

portfolio performance. This study contributes to the empirical literature in this field by 

demonstrating how the concept of a state-dependent correlation with mainstream markets can 

be made exploitable in an asset allocation programme. Thus, we demonstrate how the level of 

integration of emerging markets with the world capital markets can potentially add value to 

portfolio performance and provide diversification benefits for international investors. Our 

intention is to investigate the switching behaviour of financial markets using a SDM that 

allows the asset allocation decision to be dependent on an identified state. More precisely, we 

address the following question: does a state-dependent strategy offer portfolio diversification 

benefit and improve asset allocation decision when we include emerging markets into 

portfolio? We follow Ang and Bekaert’s (2004) approach that analyses the asset allocation 

strategy for developed equity markets. However, we extend their approach to the universe of 

developed and emerging equity markets. Ang and Bekaert (2004) find that state-dependent 

strategy can potentially outperform the static mean-variance strategy because they capture 

different distribution of portfolio returns during different time. But they point out that the 

outperformance of state-dependent strategies may be related to a historical period (in their 

case 1975-2000). Moreover, they indicate that the state-dependent portfolio need not be home 

biased and in any practical implication of a SDM, the optimal portfolio are likely to be more 

internationally diversified.  

In this study, we apply SDM on six international equity indices including both 

developed and emerging markets informed by MSCI country dataset. In this way, we seek to 

provide a comparable performance level between emerging and developed equity markets. 

We find that a number of emerging markets expose time-varying integration relative to the 

world capital markets and that market-timing can potentially outperform portfolio 
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performance and provide diversification benefits. Our empirical results suggest that the 

presence of two states and two tangency portfolios is superior to a single unconditional 

tangency portfolio. More precisely, the Sharpe ratio increased from 0.51 to 0.70 by holding 

the optimal tangency portfolio with state-dependent strategy in out-of-sample portfolio. In 

other words, investors can optimize the returns on their investment by diversifying their 

portfolio towards emerging markets (i.e. emerging Asia and emerging Europe).  

The remaining of this study is as follows.  Section 2 reviews the previous literature. 

Section 3 describes data and Section 4 gives an overview on the SDM and the model 

estimation. Section 5 presents the empirical findings and compares the performance of state-

dependent portfolios with the static mean-variance optimal portfolios. In section 6, we carry 

out a practical implementation to check if the results are robust in out-of-sample performance. 

Section 6 is concluding and remarks. 

2. Literature on dynamic allocation of fund under state-dependant approach 

International diversification of investment portfolios and the allocation of funds across 

regions are crucial for investors. The benefit of portfolio diversification initiated by Grubel 

(1968) who finds that an internationally diversified portfolio brings higher return and lower 

risk in comparison to a purely domestic selection of portfolio. Portfolio optimization is the 

most developed and practiced approach to assess the optimal decision in allocation of funds. 

The mean-variance approach developed by Markowitz (1952) is the foundation for 

portfolio selection. The approach selects the optimal portfolio by calculating the risk-return 

trade-off utilizing the estimated mean vector and covariance matrix of portfolio returns. One 

of the benefits of the Markowitz approach is that there are no limitations on the asset classes 

that can be incorporated. For instance, equities and fixed-incomes can be added to the model 

to achieve the optimal portfolio. However, the Markowitz approach is a one-period approach 

without stochastic specifications. The model also assumes that asset returns are formed on a 

stationary process with mean and covariance matrix of returns being constant over a specific 

period.  

A wide range of research argues that asset returns follow a more complex process with 

multiple-periods with changes in market conditions relating to the business cycle, and each 

associated with a different distribution of returns. This empirical characteristic of asset 

returns highlights the necessity of a dynamic model in the allocation of funds decision so as 

to account for different distributions of returns across different time horizons.  
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The SDM generates a practical measure of addressing the shifting correlation 

conditions. In this study, we follow the standard Markowitz portfolio approach to allow the 

shifting nature of covariance matrix under separate market situations. Indeed, one of the 

serious concerns emerged during the 2008 global financial crisis (GFC), and more broadly in 

any market turbulence, was the sudden increase in correlations that arise leading to an 

ensuing lack of diversification in investment portfolios.   

There have been a number of studies detecting the presence of multiple states in 

financial markets, more precisely in stock markets. A notable example is Hamilton and 

Susmel (1994) who apply Markov-switching model by analysing US weekly stock returns to 

describe volatility in stock returns whereby high volatility state to some extent is related to 

economic conditions. Their analysis supports previous findings that negative shocks lead to 

higher volatility than would positive shocks of the same magnitude, known as volatility 

clustering. These studies generally specify that the high (low) return of the stock market 

subject to low (high) volatility.  

The increase in correlation between international financial markets, which has arisen 

during bad times, raises questions about the advantage of international diversification in 

optimal portfolios. Ang and Bekaert (2002) were among the first to address this issue by 

developing a dynamic portfolio selection for US investors utilizing a Markov-switching 

approach that could account for high correlation and volatilities during market turbulence. 

They show that international diversification can still benefit investors while allowing for 

state-dependency in international financial markets.  

Graflund and Nilsson (2003) address the questions of how investors’ perception of the 

state of the economy affects the dynamic portfolio decision in four major markets, US, UK, 

Germany and Japan with a Markov-switching approach. Their findings pinpoint the economic 

influence of accounting for the presence of state dependency, as taking a specific state into 

account affects the portfolio decision. Their findings are robust across the four influential 

economies of investigation. 

Honda (2003) investigates the dynamic portfolio choice in which the mean returns of a 

risky asset depend on an unobservable state variable of the economy. The investor evaluates 

the prevailing state by observing past and current stock prices. He finds that the optimal 

portfolio of a long-term investment horizon can be essentially different from optimal portfolio 

of a short-term investment horizon. He also finds that the level of investor’s risk aversion, the 

estimation of asset returns, and the prevailing state are key factors in investor’s optimal 

portfolio decision. 
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Ang and Bekaert (2004) extend a Markov-switching approach for a broader 

international asset allocation strategies relying on changes in the systematic risk for six major 

equity returns. They use a two-state Markov-switching model to estimate returns and 

covariance matrix providing superior risk-adjusted returns in the content of an optimal 

international equity portfolio. Further, they argue that substantial wealth was achieved when 

investors switched between diverse assets such as equities, bonds and cash. In particular, 

market-timing profits are possible because high volatility states are contemporaneous with 

periods of high interest rate. 2  

Guidolin and Timmermann (2007) identify four states, characterized as crash, slow 

growth, bull and recovery states, in the joint returns series of stock and bond markets using 

Markov-switching model. They show that optimal allocations of fund vary significantly 

across different states and change over time as investors reassess their estimates of the state 

probabilities and each state has an intuitive interpretation. The out-of-sample forecasting 

method conducted in their study supports the economic justification for the presence of state-

dependent in the allocation of funds. 

Tu (2010) suggests a Bayesian framework for constructing portfolio that takes into 

account state-dependent model together with asset pricing model uncertainty and parameters 

uncertainty. The sample set consists of investable assets including the risk-free asset, the 

value-weighted Centre for Research in Security Prices market index portfolio, the size factor 

portfolio, the value factor portfolio and the Fama and French 25 portfolio sorted on size and 

book-to-market. His findings reveal that the economic value of accounting for state-

dependent model is substantially different from the commonly used single-state models and it 

should be considered instead in portfolio selection regardless of any concerns about model or 

parameters estimates. 

Ang and Timmermann (2011) survey state-dependent models with application in 

finance literature to model interest rate, equity returns, exchange rates and asset allocation. 

They conclude that the switching behavior in financial markets lead to potentially large 

consequences for investors’ optimal portfolio selection. 

Kritzman, Page, and Turkington (2012) consider Markov-switching models to forecast 

the asset returns in market turbulence, inflation and economic growth. They find that state-

                                                        
2 They stated that ‘’in a persistent high-volatility market, the model told the investor to switch primarily to cash. 

Large market-timing benefits are possible because high-volatility states tend to coincide with periods of 

relatively high interest rate’’. 
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dependent asset allocation substantially improve the portfolio performance in comparison to 

the static asset allocation.  

Bae, Kim, and Mulvey (2014) investigate the presence of state dependency in various 

asset classes, namely the S&P500 index, US government bonds and the Goldman-Sachs 

commodity index, as an additional asset class into portfolio. They develop a stochastic 

program to optimize portfolio selection employing the Markov-switching approach. Their 

analysis confirms the findings of earlier researchers that accounting for state-dependency 

information help portfolios avoid risk during left-tail events. 

More recently Dou et al. (2014) extend Ang and Bekaert’s (2004) approach to a diverse 

range of regions and sectors. They find that state-dependant allocation of fund adds value to 

the standard optimal portfolio, supporting the prior findings by other researcher. Additionally, 

optimal allocation across sectors provides an alternative to international diversification of 

fund allocation. 

Jiang, Liu, and Tse (2015) test a dynamic investment strategy applying a Markov-

switching approach using the international iShares exchange-traded funds. They find that a 

dynamic investment strategy outperforms the standard mean-variance strategy and this can be 

more practical and even incorporate into highly frequent trading process such as exchange-

traded funds.  

Pereiro and González-Rozada (2015) use a state-dependent model known as self-

exciting threshold autoregressive model, to identify the price changes in a large number of 

emerging and developed markets. They show that such a model has the potential to improve 

the accuracy of long-term financial forecast. However, they did not check whether taking 

state-dependent into account could properly optimize asset allocation programme.   

Nystrup, Hansen, Madsen, and Lindström (2015) examine whether a state-dependent 

investment strategy can effectively respond to changes in financial markets, in an effort to 

benefit over the long-term horizon investment in comparison to standard approaches. They 

confirm the validity of their investment strategy of switching between stocks and bonds.   

One conclusion from these findings is that the potential benefit of state-dependent 

based asset allocation is achievable, provided sufficient information about the prevailing state 

and future changes. However, investors should consider this benefit with caution. First, 

because not all of these findings consider transaction costs involved in switching between 

different assets. This is essential as frequent rebalancing can possibly outweigh the benefit of 

dynamic investment strategy. Nevertheless Nystrup et al. (2015) state that even with the 

inclusion of some level of transaction cost, the dynamic investment strategy can be profitable. 
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Second, the practical tests on a dynamic investment strategy have been limited to relatively 

developed financial markets by focusing on different asset classes such cash, bond and equity 

index. As these markets are relatively integrated, the dynamic asset allocation that switches 

between diversified assets in these markets may not purely reflect the success that can be 

possibly achieved by investors especially during bad times. In this study, we argue that 

investors can switch their funds to emerging markets as an alternative to invest in a safe asset 

or a bond during bad times, which recommended by many researchers. 

3. Data 

In this study we aim to investigate the performance of emerging market indices and 

whether time-varying systematic risks can improve the estimated expected returns hence 

portfolio performance. For this purpose, we used the Morgan Stanley Capital International 

(MSCI) emerging markets classification for three regions (Asia, Europe and Latin America). 

We justify our selection of MSCI indexes by the fact that they constitute a reliable benchmark 

measure of market performance. In addition, they have also been widely applied in several 

previous studies. As a benchmark measure, we also analyse the MSCI indexes for developed 

markets (Europe, North America and Pacific) enabling us to have comparable investigation 

on equity indices (Table 1).  

[Insert Table 1 here] 

We obtain data from the Thomson Reuters Financial DataStream. The indices cover 

weekly returns in the period ranging from 3 January 2001 till 30 December 2015 which gives 

us an evaluation of equity indices before and after the subprime crisis, providing a reliable 

measure for the performance of the models when we look at emerging markets. We use 

weekly data to avoid the problem of non-synchronous trading and short-term correlations due 

to noise with higher frequencies such as daily data.3 Using low-frequency data also allows us 

to isolate cyclical variations and to better analyse state dependency across time. Hamilton and 

Susmel (1994) suggest that state-dependent heterscedasticity is more appropriate for low-

frequency data such as weekly and monthly data. Moreover, according to Aloui and Jammazi 

(2009) state dependency can be detected more clearly across time using low frequency. This 

is further proved by Walid, Chaker, Masood, and Fry (2011) who employ SDM to investigate 

the dynamic linkage between stock price volatility and exchange rate changes on emerging 

                                                        
3 Nonsynchronous trading can cause correlations between two independent assets, when there is not any. This in 

turns affects portfolios and risk management.  
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markets. On the other hand, most of the previous studies on state-dependent asset allocation 

strategy use monthly return data; as recommended by Dou et al. (2014), one extension would 

be to investigate the switching behaviour of asset returns on a weekly basis, which might 

convey more timely information, especially during the beginning of the high volatility state 

when the necessity of diversification is more highlighted.  

We calculated returns as the logarithmic of total returns indexes. Our proxy for the risk-

free rate is the weekly 3-months US LIBOR rate. For the world financial markets index, we 

use the MSCI world total return index. These rates are used to evaluate equity indexes 

performances using international capital asset pricing model (ICAPM).  

4. Description of the Model 

The parameters estimation of SDM consists of two steps. First, we estimate the state-

dependent expected returns and standard deviation of the world market returns. From that we 

distinguish between high volatility and low volatility of the world markets based on the 

realization of the state probabilities including both ex-ante and ex-post probabilities. Second, 

the expected excess returns for each region are estimated based on identified state of the 

world market returns but separate from the estimation of the world return parameters. Hence, 

the information in individual regions does not influence the world return generating process. 

4.1 State-dependent Model – World market Returns 

The intrinsic idea underlying SDM is that there exist two states of economy, when the 

first one corresponds to normal period (high return – low volatility) and second one is related 

to time of uncertainty (low return – high volatility).4 These two states may offer different 

investment opportunities and hence different asset allocations over time as the investors’ 

perceptions change depending on the underlying state probabilities. We investigate whether 

state-dependent mean-variance efficient (MVE) portfolio across different states can 

potentially outperform the mean-variance optimal portfolio. To demonstrate this hypothesis 

empirically, we set the excess return series in a state-dependent framework. To maintain the 

parsimony of the model we follow Ang and Bekaert (2004) approach who assume that the 

expected excess returns in each region is linear to its beta with respect to world market 

returns. In another word, we assume that the expected excess return for each region drives 

                                                        
4 Several studies extended the model to more number of states, see for example Guidolin and Timmermann 

(2007). 
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from the world expected excess return based on market volatility. The equation for the world 

equity market in excess of risk free rate is then defined as:   

𝑟𝑡𝑤 =  𝜇𝑠𝑡
𝑤 + 𝜎𝑠𝑡

𝑤𝜀𝑡𝑤                                                                                                         (1) 

where 𝜇𝑠𝑡
𝑤 is the world conditional expected return and 𝜎𝑠𝑡

𝑤 is the world conditional variance 

(volatility). The assumption is that the world expected returns and volatility can take two 

different values depending on the realization of the two unobserved state variables, 𝑠𝑡, which 

indicates the world market condition. Then we assume that the excess returns series have two 

unobserved states, state1 and 2. 5  Subsequently, 𝜇𝑠𝑡
𝑤  and 𝜎𝑠𝑡

𝑤  can take different values 

according to realization of the state variable 𝑠𝑡.  

The economic explanation underlying this assumption is the phase of the world 

economic cycle. As a result, the equity markets can be defined by high uncertainty and less 

returns (bear market) and low uncertainty and higher returns (bull market).  

In order to complete this process, the likelihood function should be characterized such 

as to maximize the parameters of this function. In conducting SD-ICAPM in this study, the 

parameters estimation is carried out by adopting expectation maximisation (EM) algorithm of 

Hamilton (1990) (see Appendix B for further explanation on Expectation Maximisation 

Algorithm).  

The state variable 𝑠𝑡 follows a two-state Markov chain process with constant transition 

probabilities:  

� 𝑃11 1 − 𝑃11
1 − 𝑃22 𝑃22

� 

where, the probability of remaining in the same state next time depends only on the current 

state. If the current state is State 1, 𝑃11 denotes for the probability of staying in the first state 

(i.e. 1 − 𝑃11  denotes for the probability of transitioning to another state). Likewise, if the 

current state is State 2, 𝑃22  denotes the probability of remaining in State 2 and 1 − 𝑃22 

denotes for the probability of transitioning to another state (see Appendix A for further 

explanation on Markov chain process).  

With this alteration in the model, the world expected returns and volatility can be 

varying through time. 

Assuming that an investor knows the current state, the conditional expected returns and 

conditional volatility for the world market returns in the next period would be: 

                                                        
5 The number of states is restrictive since including more state may result in extreme computational issues.  



 
 

11 
 

𝑒1𝑤 = 𝑃11𝜇𝑠𝑡=1
𝑤 + (1 − 𝑃11)                                                                                            (2) 

∑1𝑤 = 𝑃11(𝜎𝑠𝑡=1
𝑤 )2 + (1 − 𝑃11)(𝜎𝑠𝑡=2

𝑤 )2 + 𝑃11(1 − 𝑃11)�𝜇𝑠𝑡=2
𝑤 − 𝜇𝑠𝑡=1

𝑤 �
2
                    (3) 

If the current state is State 1, 𝑠𝑡 = 1 and would be: 

𝑒2𝑤 = (1 − 𝑃22)𝜇𝑠𝑡=1
𝑤 + 𝑃22𝜇𝑠𝑡=2

𝑤                                                                                    (4) 

∑2
𝑤 = (1 − 𝑃22)(𝜎𝑠𝑡=1

𝑤 )2 + 𝑃22(𝜎𝑠𝑡=2
𝑤 )2 + 𝑃22(1 − 𝑃22)�𝜇𝑠𝑡=2

𝑤 − 𝜇𝑠𝑡=1
𝑤 �

2
                    (5) 

If the current state is State 2, 𝑠𝑡 = 2.  

𝑒1𝑤denotes for the world conditional expected returns in State 1. If State 1 realizes, the 

investor assigns the expected returns to be 𝑒1𝑤. Likewise, if the investor realizes that the world 

market is in State 2, he considers 𝑒2𝑤  as the expected returns. To estimate this expected 

returns, the investor applies (1 − 𝑃22) and 𝑃22 to weight the expected returns.  

For instance, when the investor knows that the world market is in State 1 today, the 

expected return for the next period depends on investor’s expectation for the state realization 

at time 𝑡 + 1. Therefore, the investor weights the possible realization of expected returns, 𝜇𝑠𝑡
𝑤, 

based on related probabilities.  

Similar to the conditional mean, the conditional variance changes across states. When 

investor realizes that the world market is in State 1 at time 𝑡, he expects that the first state will 

carry on with probability 𝑃11  and assigns a probability of  (1 − 𝑃11)  for transitioning to 

another state (i.e. State 2). In fact, the first element in equation (3) and (5) is a weighted 

average of conditional variance across the two states. The second element is an additional 

jump, which arises because the conditional mean is different across the two states.  

In case that 𝑃11 = 1 − 𝑃22, the assumption of state structure is not fitted to the expected 

returns since they are identical through different states. However, an empirical estimation of 

state persistent has been documented in previous studies (Ang & Bekaert, 2002, 2004; 

Guidolin & Timmermann, 2008).  

4.2 State-dependent Model for International CAPM 

State-dependent ICAPM (SD-ICAPM) is considered the return generating process to be 

affected by state variable st which identifies the process at each point in time based on the 

realization of the state probability.6 The underlying assumption is as follows: if st = 1 means 
                                                        
6 Following Ang and Bekaert (2004) the SD-ICAPM is conditional on smoothed probabilities of the high (low) 

market volatility state being lower (higher) than 50 per cent. More precisely, the expected return for each region 

is calculated as a product of estimated betas and world market expected returns with smoothed probabilities of 

high (low) market volatility being lower (higher) than 50 per cent. 
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that the process is in state 1 and we assume that st = 2 when the process is in state 2. In the 

other words, the return generating process can be sufficiently modelled by SD-ICAPM in 

which one state is subjected to normal volatility (st = 1) and the other is high volatility 

(st = 2).  

To characterize this model to generate the expected returns, the modified linear ICAPM 

specification with state dependency is applied by allowing the parameters to be time varying.  

ri,t = αi,st + βi,st(rm,t) + εi,st                   εi,st ∼ N( 0,σi,st
2 )                                       (6) 

where αi,st  denotes state-dependent alphas, βi,st  denotes betas and εi,st  is idiosyncratic 

volatilities for markets excess returns based on the realization of the state probability (see 

Appendix C for further explanation on filtered and smoothed probabilities). 

When the state probability is realized, equation (6) can be defined as:  

ri,t = αi,1 + βi,1(rm,t) + εi,1                                                                                          (7) 

when state probability pt > 0.5, or 

ri,t = αi,2 + βi,2(rm,t) + εi,2                                                                                          (8) 

when state probability pt < 0.5. 

More precisely, we assume that st= 1 denotes a low variance state and st= 2 denotes a 

high variance state. Then σi,st
2  is defined as the conditional variance 7  of residuals 

where:  σi,22 > σi,12 . 

4.3 Asset Allocation Strategy  

This section explains the asset allocation by implementing the SDM for developed and 

emerging equity markets. In order to carry out the asset allocation strategy, we apply the 

mean-variance optimization following Ang and Bekaert (2004).  

To estimate the expected returns and variance-covariance matrices associated with each 

state, we define the vector of conditional expected returns for each region to depend on state 

𝑖 , 𝑒𝑠𝑡=𝑖 , where 𝑖  implies current state according to smoothed probabilities. We allow the 

variance-covariance associated with each state to be Σ𝑖.  

Because the world expected returns switches between two states, the expected returns 

for each region, given by 𝛼𝑖+𝛽𝑖𝑒𝑖𝑤 vary across states. We have 𝑒𝑖𝑤 defined in equation (2) 

and (4) and with 𝛼𝑖and 𝛽𝑖 as vectors defined in equation (7) and (8) as the parameters of SD-

ICAPM for the six regions. Therefore, the expected returns for each region are specified as: 

𝑒𝑠𝑡=𝑖 = 𝛼𝑠𝑡=𝑖+𝛽𝑠𝑡=𝑖𝑒𝑖
𝑤                                                                                                   (9) 

                                                        
7 We could either have conditional mean or conditional variance model. 
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where the expected returns for each region vary depending on their different alphas and betas 

with respect to the realization of state probabilities for world market returns, smoothed 

probabilities.  

The variance-covariance matrix has three elements. First, there is an idiosyncratic 

volatility, 𝜎𝑖, for each region that we obtain by matrix 𝑣𝑖 for the state 𝑖: 

𝑣𝑖 = �
(𝜎�𝑖)2 0

0 (𝜎�𝑖)2
�                                                                                                    (10) 

where 𝑣𝑖  is a matrix of zeros with (𝜎�𝑖)2  along the diagonal. Second, the difference in 

systematic risk, 𝛽𝑖, through different regions and their correlations are given by the world 

market variance and the betas similar to a normal model:  

Ω𝑖 = (𝛽𝑖𝛽𝑖′)(𝜎𝑖𝑤)2 + 𝑣𝑖                                                                                               (11) 

Since the variance of the world market and betas for the next period, time 𝑡 + 1, relies 

on the realization of the current state, time 𝑡, we obtain two possible variance matrices for the 

expected returns next period.  

Third, because the covariance matrix accounts for state structure, it is associated with 

the realization of the current state. As a result, the covariance matrix has additional jump 

component to the conditional variance matrix, which again arises because the conditional 

means are different across two states. Therefore, the conditional covariance matrix associated 

with each state is defined as:  

Σ1 = 𝑃11Ω1+(1 − 𝑃11)Ω2 + 𝑃11(1 − 𝑃11)(𝑒1 − 𝑒2)(𝑒1 − 𝑒2)′                                 (12) 

Σ2 = (1 − 𝑃22)Ω1+𝑃22Ω2 + 𝑃22(1 − 𝑃22)(𝑒1 − 𝑒2)(𝑒1 − 𝑒2)′                                 (13) 

where Σ1  is the conditional covariance matrix if the current state is State 1 and Σ2  is the 

conditional covariance matrix if the current state is State 2. 

To perform mean-variance optimization, we need to specify the risk-free rate. In this 

regards, for each period, we assume the risk-free rate to be weekly 3-months US LIBOR rate, 

hence, the risk-free rate will be vary over time.  

The SDM provides two optimal tangency portfolios (for all the equity regions) that 

investors can select, depending on the state realization. One obvious issue as indicated in the 

literature is that (i) the mean-variance portfolios based on historical data may be quite 

unbalanced, and (ii) the rational investors do not apply straight forward portfolio weights 

(Black & Litterman, 1992; Green & Hollifield, 1992). One practical solution, therefore, is to 

impose constraint on asset allocation program as recommended by Ang and Bekaert (2004) 

for future studoies. For instance, Dou et al. (2014) perform two alternative constraints on 

SDM. The short-sale constraint requires the optimal portfolio weights to be positive; while 
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the benchmark constraint keeps the asset allocations close to their average market 

capitalization (e.g. not more than 10 per cent deviate from market capitalization).  

4.4 Performance Measurement 

A numbers of measurements have been introduced to assess equity return performance, 

often depending on the type of risk measure under consideration. The main performance 

measure is the Sharpe Ratio (SR) (Sharpe, 1966). 

The interaction between average asset returns and its standard deviation from the mean 

forms a criterion for rational investors to develop optimal strategies and make marginal profit 

between different possible investments. This statistics is adopted to assess the asset 

performance. The Sharpe’s (1966) ratio, refers to this measurement:  

𝑆𝑅 = (𝑟𝑖,𝑡−𝑟𝑓,𝑡)
𝜎(𝑟𝑖,𝑡)

                                                                                                               (14) 

where 𝑟𝑖,𝑡 refers to the returns on portfolio 𝑖 and 𝑟𝑓,𝑡 denotes for the risk-free rate. This ratio 

compares the arbitrage profit by risk associated to the investment on a portfolio. In practice, 

the higher the ratio implies better performance of the portfolio. In a case that the SR is 

positive (negative), the asset 𝑖 outperforms (underperforms) given the risk-free rate. Indeed, 

excess return is related with higher risk if the ratio ranged from 0 to 1, whereas it related to 

lower risk if the ratio was higher than one. 

5. Empirical Results  

In order to achieve reasonable outcomes, the development process should take into 

consideration the distributional characteristics of financial data. Table 2, Panel A, presents the 

summary statistics of a sample set. The first part summarizes characteristics of the excess 

return series for each of the equity regions. The following properties of data are worth 

considering. First, we note that markets with marginal excess returns do not necessarily 

present higher volatility suggesting that the risk-return trade-off may not be present. Second, 

negative skew implies that the return distribution is skewed to the left and has long left tail. 

This indicates that large negative returns are most likely to happen. However, the excess 

return distributions are not heavy unconditional skewed, except for Latin America and 

emerging Europe. Third, as a common factor of financial time series, these markets exhibit 

high level of kurtosis than normal value of 3. Accordingly, the distributions of excess return 

series are leptokurtic and hence are non-Gaussian. Furthermore, Jarque-Bra test statistics, 

advocated that excess return series are not well estimated by normal distribution. We perform 
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unit root test of Dickey and Fuller (1981) on logarithmic of excess returns. The associated test 

statistics is also presented in Table 2, Panel B. The result show that all the excess return series 

are integrated to the order of 1, since the result of ADF test statistics are less than critical 

value. Estimates from the correlation matrix of excess return series, Panel C, for the world 

markets and the six equity regions suggest that excess returns series have very different 

degree of correlation with correlation coefficient ranging from 0.75 to 0.94, for emerging 

Asia and Europe respectively.   

[Insert Table 2 here] 

Figure 1, shows the volatility clustering of logarithmic excess returns. Some of these 

equity markets experience spikes of volatility at similar time during world events such as the 

2001 September 11 terrorist attack, the 2003 Internet bubble, GFC during 2008-2009 and 

more recent market fall due to European sovereign debt crisis in 2011. 

[Insert Figure 1 here] 

Table 2, Panel D summarizes the results of unconditional ICAPM, without switching 

condition, estimated by OLS and Newey-West HAC standard errors were computed (Newey 

& West, 1987). The necessary condition for the model is: intercept term (α) must be zero. 

Then we assume that the market is integrated with the world financial system if β=1 and is 

segmented if β=0. First, the preliminary results show, for the unconditional ICAPM, the 𝛼�’s 

are not significantly different from zero at conventional significance level. Second, �̂�’s in all 

of the markets are estimated at high level of significance and their magnitudes are appeared 

economically reasonable. However, the value of �̂�’s for Emerging Europe (1.40), Europe 

(1.15) and Latin America (1.28) imply volatility at par with world market and suggesting 

strong level of integration with world markets. 

5.1 Model Estimation and Results  

Table 3, Panel A, includes the estimation results for the mean-variance model for the 

world equity markets, equation (1). We consider the first state as a normal period, where the 

world equity markets have yield 0.35 per cent (18.20% per year) with 1.37 per cent (9.87% 

per year) volatility. On the other hand, when the world markets are in state 2, high volatile 

state, it is expected to yield a negative return of -0.50 per cent (-26% per year) and higher 

volatility of 3.63 per cent (26.17% per year).  

[Insert Table 3 here] 

Since the historical data are adopted to characterize the excess returns, it is expected 

that the model would generate reasonably poor forecast about expected returns. This is 
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reasonable as changing in financial leverage, which cause by negative shocks, stimulates the 

volatility and hence expected returns Black (1976) and Christie (1982). More specifically, 

high (low) returns and low (high) volatility states are associated with the existence of bull and 

bear markets (Ang & Bekaert, 2004; Dou et al., 2014; Liu, Margaritis, & Wang, 2012). The 

results of this study are consistent with the above findings that obtained negative correlations 

between state-dependant volatility and returns.   

The estimated transitional probabilities are 𝑃11 = 0.96 and 𝑃22 = 0.93 which implies 

that once the market is in state 1 today, it will remain in the same state the next period with an 

average 96% of the time. Accordingly, there is only 4% likelihood that the market switches 

into a high volatile state (state 2). Similarly, there is only 7% likelihood that it will switch out 

of the high volatile state, meaning that either of these states are persistent. As Hamilton 

(1990) noted, we can use these transition probabilities to measure the approximate time 

duration in which the world  market system stays in a given state by calculating the maximum 

number of corresponding periods, define as, 𝑃(𝑆𝑡+𝑛 = 𝑖, 𝑆𝑡+𝑛−1 = 𝑖, … , 𝑆𝑡+1 = 𝑖| 𝑆𝑡 = 𝑖) >

0.5.  

Then the expected duration of remaining in each state can be estimated as 1
1−𝑃11

, where 

𝑃11  is estimated transitional probability. The expected duration of being in each of these 

states are approximately 27 and 14 weeks respectively (Table 3, Panel A).  

Table 3, Panel B, contains the estimation results for the SD-ICAPM from equation (7) 

and (8). First, the 𝛼�’s are not significant at conventional level of significance. Second, �̂�’s are 

estimated with high level of significance in both states and economically reasonable. �̂�’s for 

emerging Europe, Europe and North American regions increase significantly in state 2 

supporting the hypothesis that the equity markets are more integrated with each other during 

bear market. This is in line with the results achieved by Ang and Bekaert (2002) and Longin 

and Solnik (2001) who indicate that international equity markets are more correlated with 

each other in bear markets than in bull markets. However, this is not the case for all the equity 

regions. For example, the Pacific region has a beta of 0.96 during the normal period but much 

lower systematic risk (0.76) in the bear market. Besides, it seems that the low beta for the 

Pacific region is being offset by a large negative alpha in State 2 indicating that the asset in 

this region may be priced locally. This indicates that the underperformance of the Pacific 

region during a bear market is much more related to idiosyncratic events since the Pacific 

region has the lowest average returns in the data (Dou et al., 2014).  
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Overall, we find strong evidence for state-dependent beta coefficients. This implies that 

the estimated beta from the unconditional ICAPM underestimates the risk premium under 

high volatile states while overestimating the risk premium under low volatile states. The SD-

ICAPM allows the market risk premium to be drawn from two distinct states in order to 

characterize the instability of beta, consistent with previous studies. This in fact enables us to 

achieve more precise expected returns during different time periods that will give a reliable 

forecast about the portfolio performance. 

Panel A of Table 4 shows the estimated expected returns computed using equation (9) 

with data from January 2001 till December 2015 for six equity regions. The expected excess 

returns may seem high during normal time while negative during world market turbulence. 

However, they are conditional on the realization of a bull and bear markets. And because 

betas are greater than 1 for emerging Asia, emerging Europe and Latin America, the expected 

excess returns are quite high in these regions. In the bear market, State 2, expected excess 

returns are significantly lower and negative, with Pacific, emerging Europe having the lowest 

expected excess returns. Since the historical data are used, it is expected that high beta 

regions to have lower expected returns from SD-ICAPM. In fact, the expected returns for 

emerging Europe estimated by the model are the highest of all the regions in the normal state 

but by far lowest in the bear market.  

[Insert Table 4 here] 

Panel B of Table 4 reports the covariance and correlation matrix for each state obtained 

from equation (10) – (13). State 2 is high volatility state, which yield higher correlation on 

average. The average correlation has increased from 0.55 to 0.74. This is in line with the 

results achieved by Ang and Bekaert (2002) and Longin and Solnik (2001) who indicate that 

international equity markets are more correlated with each other in bear markets than in bull 

markets. 

In addition, the estimation procedure generates classification about prevailing state in 

each period. Panel A of Figure 2 illustrates the total returns of $1 invested in the six regions 

during the sample period. Panel B of Figure 2 is the ex-ante (filtered) and ex-post (smoothed) 

state probabilities. The ex-ante probability is the probability that the state next week will be 

the low-volatility world market state, given past and current information up to time t; the ex-

post probability is the probability that the state next time will be the low-volatility world 

market state, given all the information available in the sample period. The high-volatility 

markets are considerable during 2001 till early 2003 and also 2008 till 2009. The dotted lines 

show the two economic recessions, the 2001 Dot-Com Bubble and the GFC, during the 
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sample period reported by the National Bureau of Economic Research (NBER). Overall, the 

unconditional probability of the normal state, bull market, is 66 per cent (see Appendix A, 

equation (6.a)).   

[Insert Figure 2 here] 

The results in Table 3 and 4 along with the plots in Figure 2 give complementary 

description of the existence of two states for the world market, highlighting the fact that we 

need to account for the existence of at least two states when we look at the portfolio 

performance and asset allocation strategy in financial markets. 

5.2 State-dependent Asset Allocation Performance  

Figure 3 illustrates the implementation of SDM for asset allocation practice. The solid 

line shows the mean-standard deviation frontier when unconditional ICAPM is used to 

estimate the expected returns. The other two frontiers are obtained from SDM in the two 

states. The one on top of Figure 3 is for normal state, State 1. It is obvious that the risk-return 

relationship is better in State 1 than the unconditional frontier. This is because the investor is 

now accounting less likelihood to the bear market, high-volatility, for the next period.  

In practice, the presence of two states and two tangency portfolios can provide State-

dependent investment opportunity, which is prevailing to a single unconditional tangency 

portfolio. More precisely, as indicated in Figure 3, the Sharpe ratio relatively improved from 

0.1591, by holding average market caps, to 0.1718, by holding the optimal tangency 

portfolio. However, the optimal tangency portfolio remains almost at the same level of 

average market caps when we use unconditional MVE. In State 2, the unconditional portfolio 

generates a Sharpe ratio of |0.4693|, which could marginally improve when holding the 

optimal tangency portfolio for the high-volatility state. In other words, investors can 

minimize the lost on an investment if they diversify their portfolio towards less volatile 

markets when the world market is in high-variance state. 

[Insert Figure 3 here] 

6. Practical Implementation  

To demonstrate whether the state-dependent asset allocation adds value to standard 

mean-variance optimization, we estimate the returns of these two strategies both in-sample 

and out-of-sample performance. The state-dependent model estimated up to time 𝑡, and the 

state-dependent weights were calculated from information available up to time 𝑡 , the 

estimation date. The test started with $1 investment in January 2001 till December 2008 for 
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in-sample and January 2009 till December 2015 for out-of-sample period. Portfolio weight 

re-estimated every week which is consistent with data frequency. The performance criterion 

is the ex post Sharpe ratio realized by various strategy.  

The state-dependent strategy required the risk-free rate and the realization of the state. 

For the risk-free rate, we used weekly US LIBOR rate. To derive the state, we assumed that 

the investor compute the state probability from current information, which is a by-product of 

estimating the SDM. If the state probability was larger than 50 per cent for State 1, the 

investor classified the state as 1, otherwise it was classified as 2. This calculation did not 

require any further data input as explained by Ang and Bekaert (2004). 

Panel A Table 5 reports the in-sample average returns, standard deviations and Sharpe 

ratio estimated by the static mean-variance, state-dependent strategies and the MSCI world 

index for all equity asset allocation with no constraints and short-sale constraint. Over the in-

sample period, the state-dependent strategy yields higher average returns and less volatility in 

comparison to the world market returns and the static strategy with no constraint and short-

sale constraint scenarios. Although the Sharpe ratio has negative sign for the world returns, 

static strategy and state-dependent strategy but it indicates a better portfolio performance 

when state-dependent strategy is used. But the Sharpe ratio for state-dependent strategy 

outperforms when the short-sale constraint is imposed, possibly because short-sale constraint 

restrict weights to be positive.  

Over the out-of-sample period and with no constraint, the state-dependent strategy’s 

average returns is 15.70 per cent, which is higher than the average returns of the static 

portfolio (14.10 per cent) and the world market returns (10.78 per cent), Panel B of Table 5.  

The state-dependent portfolio’s Sharpe ratio increased compared to the world market 

portfolio and static strategy. The state-dependent strategy did well because during this sample 

period, all equity markets recorded better returns as the world markets passed the financial 

crisis. In fact, under both no constraint and short-sale constrain, the state-dependent strategy 

delivers higher Sharpe ratios in the out-of-sample period, compared to the world market 

returns and the static strategy.  

[Insert Table 5 here] 

Figure 4 shows how wealth accumulated over time with different strategies before and 

after GFC. Panel A shows that the state-dependent strategy performed relatively well but not 

very differently during GFC. However, it is over the last five years that the state-dependent 

strategy particularly outperformed the static strategy. Given that the results in this example 

may be closely related to historical period, the success of the state-dependent strategy 
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presented here is not necessarily a proof of future success. For instance, not all investors 

would rather choose a relatively large short positions imposed by the model.  

[Insert Figure 4 here] 

7. Concluding and Remarks  

This study adds further investigation to the literature in asset allocation decision and 

portfolio selection process by providing a comparable analysis on the behaviour and the 

performance of asset returns in both developed and emerging equity markets. We also 

contribute to the asset allocation literature by extending state-dependent asset allocation 

strategy to emerging equity markets. 

Using the MSCI country dataset for both developed and emerging equity regions, we 

find that a number of emerging market regions expose time-varying integration relative to the 

world capital markets and that market-timing can potentially outperform portfolio 

performance and provide diversification benefits. Overall, we find strong evidence for state-

dependent beta coefficients. This implies that the estimated beta from the unconditional 

ICAPM underestimates the risk premium under high volatile states while overestimating the 

risk premium under low volatile states. The SD-ICAPM allows the market risk premium to be 

drawn from two distinct states in order to characterize the instability of beta. This in fact 

enables us to achieve more precise expected returns during different time periods that will 

give a more reliable measure about the portfolio performance. 

In addition, our empirical results suggest that the presence of two states and two 

tangency portfolios that account for different distribution of asset returns is superior to a 

single unconditional tangency portfolio. More precisely, the Sharpe ratio improved from 0.51 

to 0.70 by holding the optimal tangency portfolio with state-dependent strategy in out-of-

sample portfolio. In other words, investors can optimize the returns on their investment by 

diversifying their portfolio towards emerging markets (i.e. emerging Asia and emerging 

Europe).  

One important conclusion is that state-dependent strategies have the potential to 

outperform because they set up a selective portfolio in a bear market that hedge against high 

correlations and low returns. This conclusion remains reliable in the presence of short-sale 

constraint because this portfolio essentially tilts the allocations toward the lowest-volatility 

assets. In addition, the state-dependent strategy need not be home biased; in this practical 

example, we involved more internationally diversified portfolios by including emerging 
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markets into portfolio returns. We show that diversification across emerging markets gives 

higher benefit to international investors.   

The implementation of the state-dependent strategy can further be improved by 

incorporating the following extensions. First, we only consider the equity markets in this 

study primarily because we wanted to have a comparable performance between equity 

markets in developed and emerging markets. For example, Guidolin and Timmermann (2007) 

use U.S. stocks, bonds and T-bills for the presence of state dependency in asset allocation 

decision. Further research can look at implication for the performance of bonds in emerging 

and developed markets.  

Second, in this study we use the world market returns (an endogenous variable) to 

derive the volatility in equity returns which is known as constant probabilities. One extension 

is to allow for time-varying transition probabilities. In this case, the transition probabilities 

can be drawn as a function of predetermine variable (an exogenous variable) such as 

economic variables. For example, Ang and Bekaert (2004) allow the interest rate to influence 

the transition probabilities. A time-varying state-dependent model is more flexible and 

produces more parameters. Hence, a state-dependent asset allocation that trade based on an 

economic variable may offer additional values.  

Finally, this study applies SD-ICAPM model where beta is the only factor that 

characterized the expected returns. Another possible extension is to formulate expected 

returns from factor models such as Fama and French three factor model or incorporate 

macroeconomic variables such as inflation that can influence equity returns.  
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Table 1. Composition of International Equity Markets  
The developed and emerging equity markets in each region based on MSCI equity market 

classification. 

Americas   Europe   Asia-Pacific  
Emerging Developed    Emerging   Developed    Emerging Developed  
Brazil US  Czech Republic  Austria  China  Australia 
Chile Canada  Greece   Belgium   India Hong Kong 
Colombia 

  
Hungary   Denmark   Indonesia  Japan  

Mexico  
  

Poland   Finland   Korea New Zealand  
Peru  

  
Russia  France   Malaysia Singapore  

   
Turkey   Germany   Philippines  

 
     

Ireland   Taiwan  
 

     
Italy   Thailand  

 
     

the Netherlands  
 

     
Norway   

  
     

Portugal  
  

     
Spain   

  
     

Sweden   
  

     
Switzerland   

            the UK       
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Table 2. Descriptive statistics on weekly excess returns  
Panel A, reports summary statistics of weekly excess returns and are dominated in US dollars.  The 

returns are in excess of, for each region, 3-month secondary market US LIBOR rates from logarithmic of total 

return as weekly frequency. The sample period for the regional returns is from January 3st 2001 till December 

25st 2015. ADF in Panel B stands for augmented Dickey-Fuller unit root test statistics. The correlation matrix 

of excess return series for the world markets and the regional markets reports in Panel C. Panel D is the result 

from unconditional ICAPM. Standard errors are in parenthesis. 

A. Sample moments World 
Emerging 

Asia Pacific Emerging 
Europe Europe Latin 

America 
North 

America 

 
 Mean 0.0005 0.0014 0.0003 0.0009 0.0005 0.0012 0.0006 

 
 Maximum 0.0902 0.2030 0.1400 0.2066 0.1051 0.1077 0.1027 

 
 Minimum -0.1751 -0.1874 -0.1725 -0.3762 -0.1558 -0.4041 -0.1698 

 
 Std. Dev. 0.0245 0.0326 0.0262 0.0455 0.0301 0.0391 0.0243 

 
 Skewness -0.8941 -0.4061 -0.5332 -1.3471 -0.6803 -1.7959 -0.7193 

 
 Kurtosis 8.0501 7.3696 6.5301 12.3317 6.0909 17.7782 8.2908 

 
 Jarque-Bera 0.0005 0.0014 0.0003 0.0009 0.0005 0.0012 0.0006 

         B. Unit root test 
       

 
ADF ( Log returns) -43.23* -45.01* -61.09* -53.42* -45.84* -43.77* -56.41* 

         C. Correlation matrix 
     

 
Emerging Asia 0.7430 

      
 

Pacific 0.7593 0.7533 
     

 
Emerging Europe 0.7523 0.6876 0.6376 

    
 

Europe 0.9372 0.6825 0.6929 0.7343 
   

 
Latin America 0.7996 0.6849 0.6240 0.7816 0.7447 

  
 

North America 0.9457 0.5926 0.5918 0.6318 0.8121 0.7166 
 

         D. ICAPM - OLS estimation 
      

 
Alpha 

 
0.0008 -0.0001 0.0001 -0.0001 0.0005 0.0001 

   
(0.0008) (0.0006) (0.0011) (0.0004) (0.0008) (0.0003) 

 
Beta 

 
0.9885 0.8137 1.3999 1.1544 1.2789 0.9389 

   
(0.0319) (0.0250) (0.0439) (0.0154) (0.0344) (0.0115) 

           AIC   -4.8105 -5.2992 -4.1711 -6.2676 -4.6588 -6.8412 
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Table 3. State-dependent equity model parameters estimations 
Panel A, reports the results for equation (1) where 𝜇1  and 𝜇2  are the conditional mean (expected 

returns) and 𝜎1and 𝜎2 are the conditional variances (volatility) for the world equity returns in State 1 and 2 

respectively. 𝑃11and 𝑃22 are transitional probabilities to stay in the same state and the expected duration for the 

world market returns. Panel B reports the parameters estimation for regional returns from equation (7) and (8). 

All the parameters are presented on weekly basis. Standard errors are in parenthesis. 

A. Estimates   𝜇1 𝜇2 𝜎1 𝜎2 𝑃11 𝑃22 

   0.0035 -0.0050 0.0137 0.0363 0.9624 0.9306 

   
(0.0006) (0.0022) 

    
 Expected duration     27 14 

B.     Emerging 
Asia Pacific Emerging 

Europe Europe Latin 
America 

North 
America 

 
State 1 

       
 

Alpha 
 

0.0013 0.0003 0.0007 -0.0001 -0.0001 0.0000 

   
(0.0008) (0.0006) (0.0011) (0.0004) (0.0008) (0.0003) 

 
Beta 

 
1.0986 0.9674 1.3347 1.1479 1.3834 0.8963 

   
(0.0566) (0.0450) (0.0777) (0.0275) (0.0581) (0.0193) 

  
 

      
 

Idiosyncratic volatility 0.0166 0.0175 0.0140 0.0241 0.0085 0.0180 

   
0.0013 0.0003 0.0007 -0.0001 -0.0001 0.0000 

  AIC   -5.2446 -5.7020 -4.6089 -6.6856 -5.1895 -7.3906 

 
State 2 

 
      

 
Alpha 

 
-0.0009 -0.0021 -0.0005 -0.0001 0.0009 0.0006 

   
(0.0017) (0.0013) (0.0024) (0.0008) (0.0019) (0.0006) 

 
Beta 

 
0.9490 0.7611 1.4128 1.1562 1.2541 0.9533 

   
(0.0467) (0.0357) (0.0648) (0.0226) (0.0523) (0.0176) 

  
 

      
 

Idiosyncratic volatility 0.0277 0.0280 0.0214 0.0388 0.0135 0.0313 

           AIC    -4.3062 -4.8415 -3.6529 -5.7625 -4.0822 -6.2590 
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Table 4. State-dependent equity model estimation results  
The state-dependant excess returns, Panel A, are from equation (9) and covariance of excess returns 

Panel B, are driven from estimates of equation (10) - (13). The correlations in Panel B are shaded. In Panel C, we 

computed the mean-variance efficient tangency portfolio weights by using an interest rate of 1.87 per cent, 

which is the average 3-months T-bill rate over the sample period. The MSCI average shows the average MSCI 

world index weight for each region across sample. All the numbers are annualized. 

      
Emerging 

Asia Pacific Emerging 
Europe Europe Latin 

America 
North 

America 

A. State-dependant excess returns           

 
State 1 

 
0.2502 0.1767 0.2599 0.1857 0.2243 0.1491 

 
State 2 

 
-0.2649 -0.2851 -0.3511 -0.2710 -0.2428 -0.1874 

B. State-dependent covariance and correlations       

 
State 1 

       
 

Emerging Asia 0.0306 0.6081 0.5556 0.5648 0.5720 0.4422 

 
Pacific 0.0160 0.0209 0.4511 0.5710 0.4551 0.4515 

 
Emerging Europe 0.0235 0.0163 0.0539 0.6069 0.6572 0.4153 

 
Europe 0.0145 0.0121 0.0208 0.0199 0.6556 0.6488 

 
Emerging Latin America 0.0208 0.0141 0.0318 0.0190 0.0402 0.5958 

 
North America 0.0090 0.0075 0.0118 0.0106 0.0136 0.0119 

         
 

State 2 
       

 
Emerging Asia 0.0982 0.8209 0.7394 0.7238 0.7294 0.6432 

 
Pacific 0.0635 0.0610 0.7182 0.7413 0.6976 0.6438 

 
Emerging Europe 0.1052 0.0805 0.2062 0.7742 0.8283 0.6978 

 
Europe 0.0707 0.0570 0.1095 0.0971 0.7728 0.8541 

 
Emerging Latin America 0.0892 0.0672 0.1468 0.0939 0.1523 0.7550 

 
North America 0.0515 0.0406 0.0810 0.0680 0.0753 0.0654 

         C. Tangency portfolio weight  
     

 
MSCI average market cap 0.0732 0.1151 0.0073 0.2076 0.0140 0.5828 

C1. No constraints 
      

 
State 1 

 
0.3285 0.0995 0.0656 0.1053 -0.0613 0.4624 

 
State 2 

 
-0.0807 -0.7620 0.0061 0.8773 0.0192 0.9400 

 
Unconditional 

 
0.0400 -0.3058 0.1654 0.7310 0.1844 0.1849 

C2. Short-sale constraint 
      

 
State 1 

 
0.3202 0.1035 0.0471 0.0907 0.0000 0.4384 

 
State 2 

 
0.0000 0.0000 0.0000 0.0000 0.0600 0.9400 

  Unconditional   0.0000 0.0000 0.1220 0.5675 0.1507 0.1599 
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Table 5. In-sample and out-of-sample performance of all equity portfolios 
Mean, standard deviation and Sharpe ratio, equation (14), of both in-sample and out-of-sample returns 

based on state-dependent model and static strategy. All the returns and standard deviations are annualized and 

reported in percentages. 

    No constraints Short constraint 

   World Static 
State-

dependent World Static 
State-

dependent 
   A. In-sample performance 2001-2008         

 
Mean returns (%) -0.60 -1.18 0.52 -0.60 -1.12 2.67 

 
Standard deviation (%) 18.11 24.08 20.81 18.11 21.41 16.48 

 
Sharpe ratio -0.14 -0.13 -0.06 -0.14 -0.14 0.05 

B. Out-of-sample performance 2009-2015 
    

 
Mean returns (%) 10.78 14.10 15.70 10.78 12.64 13.59 

 
Standard deviation (%) 17.01 24.08 19.64 17.01 21.41 15.82 

  Sharpe ratio 0.52 0.51 0.70 0.52 0.50 0.74 
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Figure 1: Plot of logarithmic excess returns, showing volatility clustering for developed and 

emerging equity regions. 
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A. Cumulated returns of $1 invested in the six regions January 2001- December 2015 
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B. Ex-ante and ex-post state probabilities of being in normal state (State 1) 
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Figure 2: Cumulated historical returns and ex-ante and ex-post probabilities  

Panel A shows the total returns of $1 invested in the six regions over the sample period. Panel B shows 

the ex-ante (filtered) and ex-post state probabilities. The ex-ante probability is the probability, given current 

information, and the ex-post probability is the probability, given all of the information present in data sample, 

that the state next week will be the world low-variance, the normal state.  
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Figure 3: Mean-standard deviation frontier, 2001-2015  

● World market portfolio (Sharpe ratio = 0.1611), ■ MVE State 1 (Sharpe ratio = 1.6550), ♦ MVE State 

2 (Sharpe ratio = -0.4693), ▲ MVE Unconditional (Sharpe ratio = 0.1718) 

The expected returns are estimated from ICAPM in equation (3) and SD-ICAPM in equation (13) by 

using an average interest rate of 1.87 per cent. All the mean and standard deviation are annualized.  
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A. In-sample wealth for various strategies, January 2001- December 2008 
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B. Out-of-sample wealth for various strategies, January 2009- December 2015 
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Figure 4: In-sample (Panel A) and out-of-sample (Panel B) wealth for all equity model  
Panel A shows the in-sample wealth for the value of $1 invested at January 2001 till December 2008 for the 

state-dependent strategy asset allocation model for the six regions with no constraint, compared with a static 

mean-variance strategy and the returns for the world markets. Panel B shows the out-of--sample wealth for the 

value of $1 invested at January 2009 till December 2015 for the state-dependent strategy asset allocation model 

for the six regions with no constraint, compared with a static mean-variance strategy and the returns for the 

world markets.  
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Appendix A. Markov Chains 

Consider 𝑠𝑡 as a random variable that could get the value of 1, 2… N. The assumption is that 

the probability that 𝑠𝑡 takes a particular value of j only depends on the previous value st−1 so 

that:  

P{st = j|st−1 = i, st−2 = 2, … } = P{st = j|st−1 = i} = pij                                                 (1.a) 

This process is so-called an N-state Markov chain with transition probability defines as pij. 

Where the transition probability (pij ) takes the probability that being in state j depends on 

state i (where pi1 + pi2 + ⋯+ piN = 1) (Hamilton 1994, p.678). 

Now consider the case of two states of Markov chain in level where st = 1 and st = 2 defines 

as the unobserved states with low variance and high variance respectively where the transition 

probability between the states is followed by Markov chain of order one:  

P{st = 1|st−1 = 1} = p11 

P{st = 1|st−1 = 2} = 1 − p11 

P{st = 2|st−1 = 2} = p22 

P{st = 2|st−1 = 1} = 1 − p22                                                                                             (2.a) 

It is sometime more suitable to write the transition probability in the form of matrix. Where in 

the case of two states, the transition probability takes the following form:  

P{st = j|st−1 = i} = �
pi1
pi2� = � p11 1 − p22

1 − p11 p22
�                                                               (3.a)                                  

Where :  pij= p(St=j ǀ St−1=i)      

The solution to find the unconditional probability of each state is to |P−λIN| = 0 (Where IN 

is 2×2 identity matrix in the case of two states). Following the process given by (Hamilton 

1994, p. 683), the unconditional probability that the process is in state 1 at any given time is:  

P{st = 1} = 1−p22
2−p11−p22

                                                                                                          (4.a)                                                                     

Similarly we could obtain the same value for state 2: 

P{st = 2} = 1−p11
2−p11−p22

                                                                                                          (5.a)                                                                       

To estimate the expected duration of being in each state, the occupation time is calculated as 

follows:  

∑ kT
k=1 p11k−1(1 − p11) = (1 − p11)−1                                                                               (6.a) 

∑ kT
k=1 p22k−1(1 − p22) = (1 − p22)−1                                                                               (7.a)   
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The significance of this application is that the occupation time of a typical event can be 

calculated from the estimation of maximum likelihood parameters and then compare this with 

historical average duration of the event (Hamilton, 1989). 

Appendix B. Expectation Maximisation Algorithm 

In conducting MS-ICAPM in this study, the parameters estimation is carried out by adopting 

expectation maximisation (EM) algorithm of Hamilton (1990). The estimation procedure is 

outlined below: 

The purpose is to perform a model with two states as the outcome of an unobserved two-state 

Markov chain where st is independent from εt (residuals) in both subsample. Now consider 

ri,t as observed variable.  

If the process follows by state st = j at time t then the conditional density of rit will take the 

form of:    

 f (𝑟𝑖𝑡 ǀ 𝑠𝑡=j, 𝑟𝑚𝑡 ;θ)                                                                                                               (1.b) 

where θ is defined as a set of parameters (θ ≡ α1 ,α2 ,β1,β2,σ12 ,σ22 )ʹ determining the 

conditional density. If the process is in state 1, the observed variable rit is drawn from a 

N(µ1,δ12) distribution. Alternatively, the process is in state 2 then rit has been drawn from a 

N(µ2,δ22) distribution. Therefore, the density of  rit conditional on the random variable st=j is 

equation (1.b).   

In this case θ consists of α1 , α2 ,β1,β2,σ12 and σ22 and the two densities function considering 

N=2 are: 

ηt = � f (rit ǀ st = 1,  rmt  ;θ)
f (rit ǀ st = 2,  rmt  ;θ) � =  

⎣
⎢
⎢
⎢
⎡

1

�2πσ12
exp {−(rit −α1−β1 rmt )2

2σ12
}

1

�2πσ22
exp {−(rit −α2−β1 rmt )2

2σ22
}
⎦
⎥
⎥
⎥
⎤
                                         (2.b)                                

We assume that the conditional density, function (2.b), relies only on the previous state 

(smoothed probability). 

Then the log likelihood function can be defined by getting log of equation (1.b): 

log{f(rit ǀ st=j, rmt ;θ)} = log f (ri1;θ) + ∑ log f (ritǀ rmt ;  θ)T
t=2                                           (3.b) 

That is given the numerical 8 ability to the equation (1.b) to estimate the log likelihood 

function regarding to the unknown parameters (α1 ,α2 , β1,β2 ,σ12 , σ22) (Hamilton 1994, p. 

133) 

                                                        
8 In addition to unknown parameters this model involves unobserved latent variable (Markov model). Therefore, 

expected-maximization algorithm will be performed.  
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Appendix C. Filtered and Smoothed Probabilities  

Following Hamilton (1994) we can derive the unconditional probability the process will 

be in state 1 at any given time is:  

𝑝(𝑠𝑡 = 1) = 1−𝑞
(1−𝑝)+(1−𝑞)

                                                                                              (1.c) 

Obviously, the unconditional probability that the process will be in state 2 would be 1 

minus 𝑝.  

Now the joint distribution of the two probabilities is:  

𝑝(𝑠𝑡, 𝑠𝑡−1|𝑌𝑡−1;𝑋𝑡) = 𝑝(𝑠𝑡|𝑠𝑡−1,𝑌𝑡−1;𝑋𝑡−1) × 𝑝(𝑠𝑡−1|𝑌𝑡−1;𝑋𝑡−1) 

= 𝑝(𝑠𝑡|𝑠𝑡−1) × 𝑝(𝑠𝑡−1|𝑌𝑡−1;𝑋𝑡−1)                                                                             (2.c) 

The first line in equation (2.c) is given by Bayes Theorem and the second is given by 

independent principle of Markov chain. The transition probability 𝑝(𝑠𝑡|𝑠𝑡−1) and the filter 

probability 𝑝(𝑠𝑡−1|𝑌𝑡−1;𝑋𝑡−1), are known at time 𝑡, we can compute 𝑝(𝑠𝑡, 𝑠𝑡−1|𝑌𝑡−1;𝑋𝑡). 

Summarizing 𝑠𝑡−1 from equation (2.c), we get the conditional probability of 𝑠𝑡. 

𝑝(𝑠𝑡|𝑌𝑡−1;𝑋𝑡) = ∑ 𝑝(𝑠𝑡, 𝑠𝑡−1|𝑌𝑡−1;𝑋𝑡)2
𝑠𝑡−1                                                                  (3.c) 

The joint distribution of 𝑦𝑡 and 𝑠𝑡 at time 𝑡 can be computed: 

𝑝(𝑦𝑡,  𝑠𝑡ǀ𝑌𝑡−1;𝑋𝑡) = 𝑓 (𝑦𝑡ǀ 𝑠𝑡,𝑌𝑡−1;𝑋𝑡)𝑝(𝑠𝑡|𝑌𝑡−1;𝑋𝑡)                                               (4.c) 

The first part on the right hand side of equation (4.c) is the likelihood function and the 

second part is from equation (3.c) so that equation (4.c) can also computed. As a result the 

filter probability, the prevailing state at each point in time is given by:  

 𝑝(𝑠𝑡|𝑌𝑡;𝑋𝑡) = 𝑝(𝑦𝑡, 𝑠𝑡ǀ𝑌𝑡−1;𝑋𝑡)
𝑝(𝑦𝑡ǀ𝑌𝑡−1;𝑋𝑡) =  𝑓(𝑦𝑡ǀ 𝑠𝑡,𝑌𝑡−1;𝑋𝑡)𝑝(𝑠𝑡|𝑌𝑡−1;𝑋𝑡)

∑ 𝑓(𝑦𝑡ǀ 𝑠𝑡,𝑌𝑡−1;𝑋𝑡)𝑝(𝑠𝑡|𝑌𝑡−1;𝑋𝑡)2
𝑠𝑡−1

                                   (5.c) 

The filtering probability, ex-ante, is the probability given past and current information 

up to time t. Alternatively, we can use all the information available in the sample period, ex-

post, to derive about historical state that the process was in at time 𝑡. It is therefore more 

intuitive to employ all the information available up to time 𝑇 rather than 𝑡. 

Similarly, the smoothed probability, given all the information available up to time 𝑇 is 

as followed:  

𝑝(𝑠𝑡|𝑌𝑇;𝑋𝑇) = ∑ 𝑝(𝑠𝑇 , 𝑠𝑡|𝑌𝑇;𝑋𝑇)2
𝑠𝑇−1            𝑡 = 1,2, … ,𝑇                                         (6.c) 

 

 


